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Abstract

Sharing stories, particularly about death, is an important part
of many cultures. In light of these known cases of inter-
generational knowledge transmission in biological systems,
we explore such learning through sharing information (”sto-
ries”) about death. A simulated environment with novelty-
seeking Q-learning agents allows us to explore the effects of
different types of information sharing on the lifespans of in-
dividual agents and the ability of inter-generational chains to
maximize novelty via exploration. We find that sharing in-
formation about death provides a significantly better learning
signal than sharing information about random states in the en-
vironment. Moreover, sharing shorter stories appears better
than sharing longer ones. Sharing stories promotes survival
and exploration in subsequent generations. This provides a
foundation upon which further exploration of story sharing
dynamics between agents can be explored.

Introduction
The certainty of death has been mentioned and investigated
over the ages in countless works of philosophy, art, science
and religion. Entire movements and schools of thought have
been built around the inescapable demise of all living things.
Conversely, many approaches that attempted to deny death’s
dominion and bring everlasting life to mankind have also
been synthesized. In essence, death (whether its extrinsic
possibility or intrinsic certainty) can be considered a defin-
ing property of life as we know it (Froese, 2017).

While death certainly remains a mysterious phenomenon
in biological systems, it is perhaps even more unclear what it
entails for artificial systems, especially those that attempt to
mimic biological life. Clearly, the definition of death will be
closely related to the definition of life (Gershenson, 2013).
Presently, we do not attempt to provide a concrete defini-
tion but rather consider methodological implementations of
death in artificial systems.

For instance: in some evolutionary algorithms, death is a
probabilistic feature that might allow the optimisation pro-
cess to escape local minima (Werfel et al., 2015). In many
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others agents ’die’ when they are replaced by other agents
due to computer memory limitations, and death is not mod-
elled explicitly. However, we find that there is much more at
play when death is considered at the individual rather than
evolutionary level. An individual aware of its mortality will
engage differently with risk taking behavior (Rosenbloom,
2003). The level of extrinsic mortality in a given environ-
ment will affect willingness to reproduce and the rate of re-
production (Quinlan, 2010). Moreover, these effects at the
individual level are likely to translate into evolutionary ef-
fects as they directly affect reproduction and selection.

At a strictly subjective level the awareness of death
has been linked with a certain state of anxiety in humans
(Neimeyer and Van Brunt, 2018). On the other hand, pos-
itive perspectives on death from an individual, subjective
point of view are also possible (Jonas, 1992) and have been
present in most religions from Christianity to Buddhism and
in philosophy (Schopenhauer, 1969). Regardless of its pos-
itive or negative framing it is clear that the possibility of
death and interactions with it (death of kin etc.) has a strong
influence on the behavior and development of individuals.
However, a study of a strictly subjective perspective on death
in artificial systems is a daunting challenge that perhaps
is more adequately addressed by art (Greenfield and Cao,
2021). This is partly due to the fact that at present artificial
systems have not been shown convincingly to possess a form
of individuality or subjective perspective.

Nevertheless, what can be studied, perhaps as a kind of
proxy, are the interactions between mortal, learning agents1

- interactions induced by death in artificial systems. These
include, mirroring biological life: learning from the death of
others, learning about danger, and learning not to die. The
ability to learn the aforementioned is of paramount impor-
tance to the sustenance of individual’s life and so again is a
prerequisite for evolution to take place (if an organism can-
not survive sufficiently long, it will not reproduce). Learning
from death can be essentially framed as a form of purposeful
learning from failure (Sinapayen, 2021). It has been shown

1Here we assume that an agent which learns can be seen as an
individual, which can approximate the subjectivity of a perspective.
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that indeed such learning occurs in dangerous conditions or
as response to death in many species (Lindström et al., 2016;
Griffin and Boyce, 2009). One needs only to think about
humanity’s discernment of edible from poisonous foods, so
crucial to our survival (Turreira-Garcı́a et al., 2015). Con-
ceivably, millennia ago some early hominids died as a re-
sult of a trial and error approach to foraging, but their sacri-
fices were immortalised and the knowledge of discernment
passed over time. It is not implausible that early cultures
learned about danger in this manner. It is perhaps of spe-
cial interest that in humans (but not exclusively so (Dawson
and Chittka, 2014)) this learning relies on language and an
intricate mesh-work of cultural traditions, stories and rituals
(Anderson et al., 2018). Having evolved in interaction with
a complex world and as members of inter-generational evo-
lution, humans know that the choice of stories to be shared
between generations is important Harari (2014).

The main focus of this paper is to investigate ways in
which artificial agents can learn from death. With this ap-
proach we intend to bring a perspective on death as a cru-
cial aspect of life into the artificial life community. Existing
methods from reinforcement learning are used as models of
individual behaviour: agents are greedy Q-learning agents
that collect intrinsic novelty rewards in an environment that
can ‘kill’ them. The novelty of our approach is that agents do
not ‘re-spawn’ upon death, but some experiences from their
life can be shared with subsequent agents. We believe that
this set-up captures some of life’s drive for exploration and
discovery and includes the risks associated with the termi-
nation of experience. In the following sections we present
some related literature and give details of the implementa-
tion of the system that we investigate. Lastly, we present our
results and discuss them.

Background
In this section we present the literature related to the topics
of death as it has already been researched in the domain of
Evolutionary Algorithms. We also look into research that in-
vestigates learning about/from danger in living systems that
serves as an inspiration to our implementation and experi-
ments. Lastly, we refer to the literature on Q-learning and
Novelty Search that form the backbone of our methodology.

Death in Evolutionary Algorithms:
The concept of death has often been studied within the do-
main of Evolutionary Algorithms (EA). Initially, a death of
an organism would occur when it would be replaced by a
newly generated organism. Usually there would be a limit
to the number of organisms that can be operated on at one
time. This, however, would be more due to computational
or memory constraints and not an intention to model or sim-
ulate death. An intrinsic death would also be introduced in
EA that included a notion of energy, an organism whose en-
ergy level would drop beyond a given threshold would be

removed. Deliberate introduction of an explicit death opera-
tor came later, to address issues caused by organisms evolv-
ing to escape the energy depletion death and thus stalling
evolution (Todd et al., 1993). A model for death - referred
to as ”programmed self-decomposition” was introduced at a
similar time (Oohashi et al., 1995).

Death has also been studied in Evolutionary Simulations,
which were able to show that a population of initially im-
mortal agents can evolve into limited lifespans. This sug-
gests that there are in fact evolutionary benefits to a limited
lifespan on some level (Oohashi et al., 2014). These con-
clusions have been supported by other publications, where
it was shown that in spatial models, with local reproduction,
programmed deaths robustly resulted in long-term benefits
to a lineage (Werfel et al., 2015). Moreover, it has been
shown that intrinsic mortality can be beneficial for the evolv-
ability of a population (Veenstra et al., 2020).

As can be seen from the mentioned work, in EA death is
mostly seen from a perspective of the collective (ie. species)
and the main interest lies in its effects on evolution. We
focus on a more subjective, individualistic aspect of death
(and associated knowledge transfer) that manifests itself on
a smaller time-scale than evolution.

Learning about Danger in Living Systems:
Learning about danger and effectively avoiding extrinsic
death is a key feature at the individual level of living systems
that allows for their continuous evolution. For instance: in
humans, the discernment of edible from poisonous relies on
inter-generational knowledge transmission and cultural be-
havior. While there are concerns about this knowledge de-
creasing, it is clear that it had been continuously passed on
for many generations (Turreira-Garcı́a et al., 2015).

Similar behavior can be observed in non-human animals,
like the bird - common mynah, which has been shown to
learn about dangerous places by observing the fate of others
(Griffin and Boyce, 2009). Similarly, social animals, such as
bumblebees, use social information as an indicator of safety
in dangerous environments (Dawson and Chittka, 2014).

Generally, two main types of behavioral adaptation to
danger have been identified. A genetic inclination to avoid
certain stimuli or actions and social learning (Lindström
et al., 2016). In this work our interest lies with the latter,
while the former has to some extent been studied by the field
of EA.

Novelty Search and Q-Learning:
The methodology that we employ to model the agents in
our simulations is Q-Learning (Sutton and Barto, 2018).
It is an often used and well researched model of individ-
ual learning behavior that allows us to draw parallels with
inter-generational knowledge transfer. A key element in
the implementation of Q-Learning agents is the reward that
they seek to optimise. We choose novelty search because
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it is a good model for exploratory behavior (and perhaps
also a good model for life-like behavior). Since exploration
can be considered to be associated with uncertainty and in-
creased precariousness (which is a setting which we are in-
terested in), this is a fitting framework for us. The novelty
reward is also able to capture the open-endedness of evolu-
tion, which in itself fits with our aim of modelling a living
system (Lehman et al., 2008). The novelty seeking behav-
ior has also been shown to occur in animals at an individual
level (Wood-Gush and Vestergaard, 1991). Novelty search
has also been explicitly combined with an evolutionary sim-
ulations further reinforcing its fit for modelling life-like be-
havior (Lehman and Stanley, 2011).

Novelty rewards are intrinsic to an agent, in that they are
not generated from the environment (extrinsic) but depend
on the previous experience of an agent. For example, the
novelty of an experience A may depend on the number of
times A was experienced previously. Intrinsic rewards are
typically applied as reward bonuses: r = re+ri, an extrinsic
reward plus an intrinsic reward. The intrinsic rewards thus
provide exploration bonuses in initial phases of Q-learning
and are designed to decay over time. For context, a few
approaches that have been tried are estimations of learning
progress (Lopes et al., 2012), and count-based exploration
suitable for tabular environments and extended to continu-
ous environments (Bellemare et al., 2016; Ostrovski et al.,
2017). When only ‘novelty rewards’ (tabular counts, or
non-tabular pseudo-counts) are considered, it is analogous
to pure exploration approaches investigated in Multi-Armed
Bandits (Bubeck et al., 2009), which have also been ex-
tended to Markov Decision Processes (Ménard et al., 2021).
Their results suggest that for best-policy identification (one
possible objective of pure exploration) 1/n reward bonuses
scale better than 1/n2, where n is the number of times an
event was experienced. It has been shown that intrinsic mo-
tivation only can be sufficient to learn many useful skills in
reinforcement learning tasks (Eysenbach et al., 2018; Burda
et al., 2018) in fully unsupervised learning without a reward
function. Since crafting reward functions can be a consum-
ing, possibly infeasible task for large complex environments,
intrinsic rewards are promising future directions for rein-
forcement learning.

Methods
As we have stated, our intention is to study the effects of
death on learning in an artificial system. We employ tab-
ular novelty Q-Learning agents in a gridworld with death
states. The agents explore the gridworld until they encounter
a death state. Once a death state is encountered the agent
dies and is removed. A new child agent is then deployed into
the same gridworld and some of the previous parent agent’s
memory is passed on to the child. This sharing of memories
is intended to model an inter-generational sharing of experi-
ences, which in human culture commonly takes the form of

stories, written and oral. In this section we provide details of
our methodological set up, though the methods we employ
can entirely be found in the referenced literature on rein-
forcement learning. Our contribution is a novel interpreta-
tion of reinforcement learning methods as inter-generational
transmissions.

Q-Learning
Our learning agents are using tabular Q-Learning, which is
based on Markov Decision Process (MDP), with the tuple
⟨S,A, R, P ⟩. S ⊆ Rn represents the set of all possible
states of the environment. A ⊆ Rm is the m-dimensional
action space. R ∈ (Rn,Rm) → R is the reward function
determining the “reward” for state s′ given to the agent after
selecting action a in state s. P is the transition probabil-
ity function. Maximizing the cumulative reward function
makes it possible for an agent to learn the action a to take,
in a given state s (Sutton and Barto, 2018).

The approach to solving the MDP that we employ is
called Q-learning (Watkins and Dayan, 1992). It uses a
function Q : s × a → R to map state and action pairs to
the reward space. The Q-function estimates the expected
cumulative sum of discounted future rewards given a state s
and a greedy policy π which picks the highest value action in
each state. As an off-policy dynamic programming learning
method, the Q-values are updated online with the Bellman
update rule:

Qnew(s, a) = (1− α)Q(s, a) + α
[
r + γmax

a′
Q (s′, a′)

]
,

(1)
where α is the learning rate, which weights the impor-

tance of new experiences and affects the speed of conver-
gence, and γ is a discount factor that weights the importance
of future rewards relative to immediate rewards.

The agent has access to a Q-function, where the Q-values
for each state and action combination are stored. Following
most implementations of deep Q-learning, the agent collects
experiences (s, a, r, s′) in a memory buffer, and at each iter-
ation a random sample is drawn from the memory buffer
and used to update the Q-function. Random samples from
the memory buffer are an attempt to make up for violated
i.i.d. assumptions needed for convergence of stochastic gra-
dient. Though stochastic gradient descent is not used in our
method, we will use the memory buffer as storage to share
stories between agents.

Stories
We model inter-generational sharing by sharing experiences
in memory buffers as visualized in Figure 1. An experience
is a single tuple (s, a, s′). A death experience is a tuple
where the state s′ is a death state. When a parent dies it
can share a collection of experiences with the child which
form stories. Stories are a representation of what individuals
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born

dies

share death story
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experience: ,
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Figure 1: An illustration of death story sharing. An agent is born, inheriting whatever death stories have accumulated from its
predecessors and exploring the world in search of novelty. If and when it encounters a death state, the story of where it died is
added to the death stories repository for the next generation, while the Q-table and V-table are reset.

tell one another about their experiences in an environment.
A single story has a story size, which is the number of ex-
periences that make up the story. A story size of 1 means
that only the final experience is shared. Larger story sizes
include more experiences leading up to the final experience.

Then, a death story is a sequence of experiences that led
to the death experience, e.g.

(s, a, s′) → (s′, a, d) → (d, a, d′),

where d′ is a death state, and the above story has size 3.

Environment
The environment is a 15x15 grid world, seeded with ran-
domly located death states as seen in Figure 2. When an
agent reaches a death state, its experience terminates and it
can no longer continue or collect any more reward. Thus,
these death states work like ‘strict’ terminal states, and have
added repercussions on the agents that are explained in the
next section. The number of learning steps that an agent ex-
periences before reaching a death state (also known as the
length of a trajectory) is conceptualized as the lifetime of an
agent.

The start position of each agent is fixed at the (0,0) state.
In this gridworld states s are the grid tiles the agents can
move to S = {s|s = (i, j), i, j ∈ [0, ..., 14]}, the actions a
are up, down, left, right A = {u, d, l, r}], and the reward r is
novelty. Since the environment is a discrete and small grid-

world, our agents use a table, the Q-table, to update the ex-
pected cumulative sum of discounted future novelty rewards
while they explore the environment.

Figure 2: The 15x15 gridworld used in the experiments.
Death states are marked with an ”X”. (Left) An agent that
enters a death state ends its run. (Right) An agent may avoid
the death state if their Q-values for actions that lead to other
states are higher, perhaps because a parent agent died there
and shared that death story.

Novelty Seeking Agents
Our agents use a greedy policy π(s) = argmaxa Q(s, a)
while gathering intrinsic novelty rewards. The agents are
thus greedy explorers that always pick the action they think
will lead to the most novelty. We choose a simple and intu-
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itive definition for count-based novelty:

N(s) =
1

V (s) + 1
, (2)

where N(s) denotes the novelty of state s and V (s) is the
number of times state s has been visited. Since the envi-
ronment is a discrete and small gridworld, our agents use a
table, the V -table, to count the number of times that states
are visited. They update their Q-table with novelty rewards
given an experience tuple (s, a,N(s′), s′) using the Bellman
update rule in Equation 1.

These greedy explorers continuously explore the environ-
ment and in it they may encounter death states. The novelty
of a death state is fixed at 0, and reaching a death state ter-
minates the exploration for an agent thus impeding the agent
from further novel experiences. Whenever an agent learns
from a death state that has been added to the replay buffer,
the novelty estimates of the actions from the death state are
all set to 0, encoding the fact that no further actions are pos-
sible from the death state. This interacts with the discount
factor γ: higher values of γ increase the estimates of value
of non-death states from which future actions are possible.

After the death of a parent, a child is re-initialized at the
starting state with both the Q-table and the V -table reset.
The Q-table is reset to random values between 0 and 1 uni-
formly for all (s, a) pairs, and the V -table is reset to 0 for all
states. The child receives a new replay buffer which may
contain some of the experiences of the parent. Thus the
child will start its learning with some experiences in its re-
play buffer. When it samples an experience (s, a, s′) from
the buffer and uses it to update the Q-table, the agent will
use his own V -table to calculate the novelty reward for the
experience, rather than the novelty score at the time of the
original experience. This is justified for two reasons:
1) The novelty is a subjective, experience-dependent quan-
tity, and changes every time a state is visited. Thus old nov-
elty rewards are no longer meaningful to agents in the future
which may have visited a state more times since the original
experience.
2) When a child is born, his V -table is reset, and therefore
all experiences are now maximally novel. Then, the child
samples from a replay buffer with some experiences shared
from the parent and updates his Q-table using his own V -
table, which is consistent with the idea that a child will find
things that it has never done before to be novel.

Finally, novelty rewards monotonically decrease as a
function of visits. Thus, there are progressively fewer nov-
elty rewards to gather as agents explore the environment.
When learning from death experiences (which have nov-
elty 0), the Q-values for the novelty of actions that lead to
the death state will approach 0 at a speed determined by α,
so the novelty of those experiences during learning will be
greater than 0. Therefore, an agent that has exhausted the
novelty rewards in the states surrounding a death state may

find the Q-value of an action leading to a death state to be
greater than the Q-values of all other actions. Such an agent
would greedily pick the action that leads to the death state
and terminate his learning. To avoid such situations, agents
must have sufficiently many death experiences in their re-
play buffer, and sufficiently long lifetimes, to be able to learn
from the death experiences fast enough that the expected
novelty rewards of those experiences can never be greater
than the expected novelties of non-death experiences.

Experiments
We run a set of experiments to estimate the impact of story
size on the lifetimes of agents, and their ability to explore
the gridworld environment2 We vary story size in the range
0 to 15, and compare three different types of replay memory
that is shared between generations for which we measure
and report the lifetimes of agents, their cumulative rewards,
and the states they visit:

• death: all death stories are shared,

• random: shared stories are created from random samples
of the replay memory,

• both: all death stories are shared, and the agents also get
samples of random stories, thus getting twice the amount
of stories: death + random.

The agents have the remaining parameters which will be
fixed throughout all simulations: α = 0.1, γ = 0.2, batch-
size of 10, buffer-size of 1000, a randomly initialized Q-
table with values between 0 and 1 uniformly, and a V -table
initialized to all 0’s. The maximum number of steps for an
inter-generational simulation is fixed at 10000, and there is
no upper bound for the lifetime of an agent meaning that a
successful agent is allowed to live for the entirety of 10000
steps.

Results
In this section we report the results of our experiments. As
we are interested in what the agents can learn from death of
their predecessors we report the effects that sharing experi-
ences between generations (transitions s, a, r, s′) has on the
average lifespan of successor. Moreover, we provide results
on the degree to which the environment gets explored over
generations. It is expected that these results would be corre-
lated: maximising the lifespan should have a positive effect
on the ability of an agent to explore, and maximising explo-
ration should allow future generations to avoid most death
states.

In Figure 3 we report the time series plots of the aver-
age lifespan of agents averaged over 10 inter-generational
runs. A difference between top and middle (or bottom and

2The code allowing for replication of our experiments is avail-
able here: https://github.com/CCarissimo/RapidRL.
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Figure 3: Average lifespan of agents over time, averaged
over 10 inter-generational runs. Error bars are calculated
with the 25th and 75th quantile. The rows separate three
shared memory settings, top) agents share death states, mid-
dle) agents share random states, and bottom) agents share
both (death + random). Each plot has three curves for differ-
ent sizes of shared stories (1, 7, and 15).

middle) shows that sharing death stories has a positive ef-
fect on lifetimes, while sharing random stories has no ef-

fect. Another noticeable result is that sharing longer stories
(size 7 and 15 in top and bottom) does not uniquely lead
to longer lifetimes. This is explained by an over-crowding
effect, whereby important death experiences are diluted in
the memory buffer by less important experiences, and is
greater for bottom where twice the number of experiences
are shared, fewer of which are death experiences.

It is worth noting that while for the ‘death’ condition of
size 7 and the ‘both’ condition of size 1 the lifetime achieves
high values and then decreases rapidly. The only consis-
tently high lifetime result is achieved by ‘death’ condition
of size 1. This is consistent with the reasoning that at some
point, while passing more information, the memory buffer
becomes filled and most important information is dilluted.

We also note that lifespan is correlated strongly with the
cumulative reward of our agents: the longer the agent lives,
the longer it is able to traverse the environment, which will
yield higher rewards over time.

In Figure 4 we present the heat-maps of visits to all the
states that make up the environment. We report the visits
for three conditions of sharing stories of size 1, namely: for
sharing the death stories, random stories and both death and
random. We pick stories of size 1 since they were the most
beneficial story size in Figure 3. For each of these condi-
tions we show the visits for the first agents, agents in the
middle and agents at the last agent of an inter-generational
run. As can be seen, only a portion of the environment is ex-
plored at the start, with many areas not being visited at all.
This is to be expected at the early stage of learning when the
agents might die quickly. For top and bottom rows there is
less overlap of the death experiences (marked as white X’s)
compared between the first and middle, and middle and last
heat-maps. This indicates that the death experience shared
between generations are likely to enable successor agents to
avoid repeating the death experiences of predecessors. The
middle row instead (for random stories) does not show this
effect. At the end for the death sharing group, (top row)
all of the environment has been explored (each state is vis-
ited at least once) and many of the death states have been
avoided. Sharing a mix of random and death states (bot-
tom row) presents similar results. Sharing random stories
does not greatly benefit exploration (middle row): most of
the world is unexplored and the agent reaches a death state
early in its exploration.

Discussion
Based on our results we are able to draw some conclusions
about what can be learned from death by novelty seeking
Q-Learning agents at an individual level. Furthermore, we
discuss these results in the light of known cases of inter-
generational knowledge transmission in biological systems.

As indicated by the results, sharing information about
death specifically provides a significantly better learning sig-
nal as opposed to sharing information about random states.
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Figure 4: Heatmap colors map: high values are bright, and low values are dark, relative to a lifetime. Values are the number of
visits of each state, averaged over 10 runs. Snapshots in time are taken in three periods during the inter-generational learning
(columns, from left to right): the first agent, the middle agent, and the last agent. Which stories are shared is also represented
(rows, from top to bottom): death, random, and both. For all runs, the story size is fixed at 1, as Figure 3 showed story sizes of
1 to be most influential in both ”death” and ”both” scenarios. White X’s mark the states where agents died.

This is not surprising and follows the general understanding
of Q-learning. In the environment that we study the death
states are most important as they affect the agent’s cumula-

tive reward most and (crucially) in an irreversible way, since
agents that avoid death states survive for longer and are able
to accumulate more novelty rewards. What is interesting and
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perhaps unexpected is that sharing the death story of size
one (only death) appears better than sharing a death story of
a larger size (including states leading to death). It appears
that the reason for that is that the leading states do not pro-
vide as much information while drowning the essential death
state information in ‘noise’. This effect is very much akin to
limited attention and information processing mechanisms in
biological systems. For our agents a limiting factor is ba-
sically the size of their memory buffer as well as the batch
size they use for updating their Q-tables. Thus, stories that
are long in size may need to overwrite old memories which
may overwrite death experiences. Additionally, longer sto-
ries lead to more non-death experiences in a buffer which
reduce the chances of sampling death experiences from the
buffer during training, thus reducing the chances that a child
will successfully learn from the death experiences of its par-
ents. In this gridworld, where the death information is much
more important than any other, it is not beneficial to share
much more than just the information about the death state.

We can draw parallels between this effect and cultural
transmission in human societies. Indeed, it appears that most
societies would focus on prioritising to identify and share
the most pertinent dangers and ways of handling them rather
than sharing random information. Furthermore, sharing the
key information as opposed to all the little details is also a
feature of much of cultural transmission (that perhaps be-
comes overloaded over time as more information gets ac-
cumulated). Intuitively, ‘Don’t eat red berries.’ is a more
effective meme than ‘Don’t go north in this forest for 20
steps, crouch next to the tree by the big bush and eat the
red berries.’. Sharing only the death state information as op-
posed to death and leading state is akin to information distil-
lation that also occurs in human cultures. It is perhaps also
worth noting here that a given culture might not be able to
immediately discern the reason for the death of their kin and
so would include all the potential causes, which would then
be distilled over time.

Nevertheless, the phenomenon of redundancy of informa-
tion in certain cultural transmissions is present in most cul-
tures. One could consider superstitions or folk tales to be a
good example of memes that were initially likely intended
to posses practical, educational value but have actually lost
value and relevancy over time (this can occur also due to
the failure of contemporaries to discern the intended value).
Our simple model is able to capture some of these complex
mechanism of cultural inter-generational knowledge trans-
mission.

Some level of cultural reset might be valuable once a cul-
ture has accumulated too much information or the informa-
tion has become irrelevant due to a changing environment.
In our model this could be implemented on a large scale with
a full reset, on a smaller level with a sliding memory win-
dow, or with some other forgetfulness mechanism. In any
case, extending the size of the world and the length of the

generational chain would allow for the ”need” for forgetting
or resets to manifest, if indeed it would help.

Future Work
We believe our work presents a convincing model of learn-
ing from death at an individual level that is also able to af-
fect subsequent generations of agents, with cascading im-
pact. The main intention of this work is to introduce the
model and its features. There is, however, much interesting
work to be done.

A follow-up study could observe the effects of the size of
the memory buffer on knowledge transmission and its ef-
fects. The number of past experiences (corresponding to
previous generations) could also be explicitly limited. Such
study could identify the optimal number of ‘relevant’ past
generations that should be remembered. As our study indi-
cates it is likely that storing all the past generations might at
some large sizes become detrimental. The memories could
also be weighted, for example, with the more frequent deaths
being saved differently or given more importance.

Furthermore, a limitation of our study is that the environ-
ment that we are studying is static. This allows us to focus
on the knowledge transmission aspect without confounding
effects of changing dynamics. Nevertheless, a more real-
istic, future research could consider dynamic environments
that change over time or due to the agents’ actions. In a sim-
ilar vein, since we have shown good results for passing the
death state across generations, it would be interesting to con-
sider passing other experiences. This could be achieved by
adding states with other interesting (and relevant to agents’
rewards) behavior to the environment and tracking the effect
of the stories told about them. It is also worth noting that re-
inforcement learning, which is essentially an optimisation,
has some limitations in terms of its ability to fully model
human behavior, which has been argued not to be reducible
to optimisation (Carissimo and Korecki, 2023). While, these
limitations do not disqualify it as a model of certain features
of human behavior, such as the one presented in this work,
it should be kept in mind that it might not be appropriate to
model the entirety of human behavior with a reinforcement
learning model.

We point out that generation like learning has been suc-
cessfully applied in state of the art reinforcement learning
research (Adaptive Agent Team et al., 2023), where the
first agent trained in an environment, who tends to con-
verge to a poor local optimum, is used as a teacher for a
next-generation agent which surpasses the teacher in perfor-
mance. Clearly there can be a benefit in inter-generational
learning, whereby the learned shortcomings of a teacher
(parent) are not passed on to a student (child). Understand-
ing better what constitutes an experience worth sharing in
artificial life is an open question. We posit that the intuition
we have as humans may serve as a useful guide in answering
these questions.
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