Automata Quest: NCAs as a Video Game Life Mechanic

Hiroki Sato!?*, Tanner Lund'*, Takahide Yoshida', and Atsushi Masumori'»?*

Tkegami Lab, Department of General Systems Studies, University of Tokyo, Komaba, Tokyo, Japan
2 Alternative Machine Inc., Tokyo, Japan
*These two authors contributed equally to this work
hsato@sacral.c.u-tokyo.ac.jp

Abstract

We study life over the course of video game history as repre-
sented by their mechanics. While there have been some vari-
ations depending on genre or “character type”, we find that
most games converge to a similar representation. We also ex-
amine the development of Conway’s Game of Life (one of the
first zero player games) and related automata that have devel-
oped over the years. With this history in mind, we investigate
the viability of one popular form of automata, namely Neu-
ral Cellular Automata, as a way to more fully express life
within video game settings and innovate new game mechan-
ics or gameplay loops. Implementatin of this demo is avail-
able at this URL.

Introduction

The world of video games encompasses a vast array of im-
mersive experiences, often involving the player engaging in
battles against various enemy characters such as wyverns,
zombies, robots, aliens, and humans. These characters, as
well as those controlled by the player, are portrayed as alive
entities within the game, and are treated as such until certain
conditions are met. Yet, is that all there is to “being alive”
according to video game mechanics?

In early video games such as Space Invaders, the invad-
ing characters’ life (i.e. alive to dead) representation is
binary—they are either hit by the player’s shots and de-
stroyed or remain unscathed and fully functional. As com-
putational power has increased and game design evolved,
more nuanced representations of being alive were made pos-
sible. The most significant change was the introduction of
hit points, popularized by games like Dungeons & Dragons
(Gygax and Cook, 1989), to measure “how close” a given
character is to their death state. However, despite advance-
ments in game design and technology, the reliance on hit
points as a primary metric for character vitality has persisted
with only minor innovation throughout the history of video
game development. Other paradigms and representations are
few. This raises intriguing questions about the nature of life
representation in gaming and whether alternative approaches
can enhance player immersion and engagement.

The Artificial Life (ALife) movement which aims to ex-
plores the ultimate question of “what is life?” through
artificial creation of life-like phenomena has accumulated
many theoretical and implementation frameworks of life in
decades. In particular, the increase of computational power
has enabled the development of many ALife frameworks and
in-silico implementations of various models of life. Here,
we argue that these models are potentially useful to inno-
vate representations and mechanisms for representing life in
video games.

In this paper, we aim to explore the current state of rep-
resentation of life in terms of being alive to dead in video
games, delving into its historical origins and examining no-
table examples. By analyzing the ways in which being alive
is portrayed and quantified in different game genres and
eras, we gain insights into the potential for novel approaches
to character vitality. We then introduce self-organization,
specifically Neutral Cellular Automata (NCA) (Mordvintsev
et al., 2020) as a novel method of representing the life and
strength of characters through controlled (designed) anti-
damage training. This enables a representation of charac-
ters’ life with regeneration of characters parts rather than
numerical character parameters currently used. Ultimately,
we hope to pave the way for advancements in game me-
chanics that more accurately capture the essence of being
alive within virtual worlds, enhancing player immersion and
contributing to the continued growth and evolution of the
medium.

Life as Represented by Game Mechanics

The way game mechanics represent life is an example of
“procedural rhetoric” and reveals the game’s perspective on
the life of digital beings Bogost (2007). Games are un-
derstood to be liminal and therefore only need to be “real
enough” to create a compelling experience for players, but
nevertheless can tell us something about what digital life
’is”, allowing us to then reason about what it “could be”
(ha Hong, 2015).

We begin our study by examining the various ways that
life is represented in game mechanics, including the role of


https://github.com/IkegLab/GNCA_invader/blob/master/README.md

Figure 1: A screenshot from a game of Minecraft, showing
a player’s partially depleted health bar (hearts) as well as a
hunger bar (meat) and armor bar (grey shirts). Both of the
latter two affect the health bar.

hit points, boss and player character (PC) design, separate
measures of life, status effects, the distinction between being
knocked down and being “dead”, and the difference between
the life of the player and the life of what they control. While
we acknowledge that the player’s perception during game-
play of life and its vibrancy/fragility/value can be affected
by many additional factors such as sound design, camera
angles, and narrative, as epitomized by the survival-horror
genre (Kirkland, 2011), we have limited our current study to
gameplay mechanics only. We do this in the pursuit of op-
portunities for mechanic innovation as well as what different
mechanics say about digital life.

Hit Points

One of the primary mechanics in modern video games is
that of Hit points (HP), which were popularized the table-
top game Dungeons and Dragons (Gygax and Cook, 1989)
and later became a staple the industry. In earlier games,
characters were either alive or dead (binary), but with the
introduction of HP, the PC could take damage without nec-
essarily dying. This system allows for more complex game-
play and combat, as characters can take multiple hits before
succumbing to their injuries. This allows for more complex
game states and gameplay decisions. For example, in the
game World of Warcraft (Blizzard Entertainment: Irvine,
2004), players have a health bar that shows their current hit
points, and they can use healing spells or items to restore
their HP and continue fighting. Managing HP is a core as-
pect of gameplay, and remains so even in player-vs-player
(PvP) contexts.

Additional Measures of Life

There are other measures, separate from HP, that impact a
character’s ability to perform actions, which is another way

Figure 2: A screenshot from a game of Amnesia in which
the player has lost their sanity. The screen becomes difficult
to see and the PC difficult to control and keep hidden/quiet,
making it easy for enemies much more powerful than the
player to find and attack them.

to measure life. In Role-Playing Games (RPGs) such as the
aforementioned World of Warcraft, magic points (MP) can
limit the use of special abilities or spells, while money can
restrict the purchase of items or equipment. The restriction
of item purchase to certain locations/times and of spells to
certain characters or character levels adds further complex-
ity.

Morale and sanity measures can also impact the ability to
perform certain actions, such as causing a character to be-
come disheartened or go insane. For instance, in the game
Darkest Dungeon (Red Hook Studios: Vancouver, 2016),
characters have a stress meter that changes over time and
causes them to become stressed or irrational, leading to im-
paired combat performance. In the game Amnesia (Fric-
tional Games: Malmo, 2010), sanity is depleted by witness-
ing disturbing events or spending time in the dark. When the
sanity meter reaches zero, the player becomes unable to con-
trol the character effectively, making it difficult to progress
through the game. To restore sanity, the player must find
light sources or consume items that restore sanity.

Status Effects

Status effects are another way that agent abilities are af-
fected, common to RPGs but not exclusive thereto. These
can include anything from poison or burn damage to debuffs
that hinder a character’s abilities. Different games have dif-
ferent status effects, each with its own set of rules and con-
sequences. For example, in the game Pokemon (Nintendo:
Kyoto, 1996), status effects such as paralysis or poison can
hinder a Pokemon’s ability to fight, while other status ef-
fects such as burn can cause damage over time. Once again,
the remedy for such effects is often an item, a spell, or the
passage of time.



Unique Bosses and PCs

Bosses and PCs have more variety in how their life is rep-
resented, with many games including boss phases, injury,
changing attack patterns, and limits on abilities. Bosses of-
ten have multiple forms or phases, each with its own set of
attacks and strategies required to defeat them. This design
encourages players to adapt and change their tactics, mak-
ing the game more challenging and engaging. An example
of this can be seen in the game Dark Souls (Namco Bandai:
Tokyo, 2011), where bosses have multiple phases that be-
come progressively harder to defeat, with different attack
patterns and strategies required for each phase.

In some games, injury can also impact a boss or PC’s abil-
ities or skills. For example, in the game Fallout 4 (Bethesda
Softworks: Maryland, 2015), if a PC’s limb is injured, their
ability to use that limb may be impaired, affecting their abil-
ity to aim or perform other actions. In the game Red Dead
Redemption 2, a PC’s stamina may be reduced if they sus-
tain injuries from falls or attacks, making it harder for them
to perform physical tasks or escape danger. Also, injury is
sometimes a required step to defeat enemies and progress in
games. In the game series Monster Hunter (Capcom: Osaka,
2004), injury of target monsters is implicitly designed as the
trigger of boss phase shifts by debuffing monsters’ abilities
related to the injured body part permanently (the opposite
approach of Dark Souls) and changes the reward for suc-
cessful hunts.

The Effects of Death on the Game World

Non-Player Characters (NPCs) in video games are often ex-
pendable and can be killed without any major consequences
to the story or gameplay. This is particularly true for NPCs
that are not central to the game’s plot or mission objectives,
such as bosses. For example, in the game Skyrim (Bethesda
Softworks: Maryland, 2011), players can kill most NPCs in
the game without affecting the main questline or their abil-
ity to complete side quests. While some NPCs may have
certain roles or items that are needed for quests or story pro-
gression, there are often alternative ways to obtain these ob-
jectives without the NPC. Most NPCs do not have phases,
and only the occasional NPC will use items or spells to heal
themselves. Their deaths are immaterial, and under some
conditions new characters just like them may spawn in their
place, rendering those deaths even less meaningful from the
player’s perspective.

On the other hand, the death of a PC can have a signif-
icant impact on gameplay itself. The player may have in-
vested time and resources into building and developing their
character, and losing that progress can be a major setback.
As a result, many games have implemented mechanics to
prevent or mitigate character death for PCs. For example,
games like Minecraft (Mojang Studios: Stockholm, 2011)
use a “’death penalty” mechanic where the player may drop
their items upon death, but can still respawn and continue

playing. Managing the risks of death by setting spawn points
and storing items in chests is part of playing the game.

Other games like Dark Souls are much less forgiving,
and use a “permadeath” mechanic where the player loses
all progress upon death and must start over from the begin-
ning or the nearest checkpoint. In this latter example, the
game world does not continue on after the player character
dies. Repeated attempts at the same section of the game is
an expected part of the experience, and game difficulty is
modulated by the frequency of checkpoint placements.

In some cases, the death of a PC can also have narrative
consequences. A horrible end to the Dark Souls game world
is presumed but not shown when the PC dies therein. As a
contrasting, more nuanced example, in the game Mass Ef-
fect 2 (Electronic Arts: Redwood City, 2010) the death of
certain party members can affect the game’s story and the
player’s ability to complete certain objectives. This can lead
to players feeling emotionally invested in their characters
and more motivated to avoid their death - even though the
game can continue on without them.

”’Knocked Down”’ vs *’Dead”

The distinction between being knocked down and being
”dead” is also an important aspect of life representation in
games, as some games allow players to revive fallen allies,
while others do not. This mechanic encourages teamwork
and cooperation, as players must work together to revive
their fallen comrades, whether controlled by the same player
or by others. In the game Left 4 Dead 2 (Valve Corporation:
Bellevue, 2009), players can revive their fallen teammates
within a limited time frame, but if they fail to do so, the
player is considered dead and cannot be revived until the
next level.

Multiple Lives

The question of whether multiple lives count as one crea-
ture or a different one is also relevant in some games. For
example, in games like Super Mario Bros. (Nintendo: Ky-
oto, 1985), the player can gain extra lives, but these are
treated as separate entities rather than being part of the same
character. This design choice has implications for how the
game is played and how players approach challenges, but
this paradigm is more similar to Reinforcement Learning’s
multiple runs (Sutton and Barto, 2018) than it is to a repre-
sentation of life.

Agents vs Units

In strategy games like Warhammer 40k: Dawn of War
(THQ: Agoura Hills, 2004), players control multiple units
that act as a single entity. These units often consist of several
individual agents or characters, each with their own HP, abil-
ities, and strengths. However, in terms of ’life”, the unit as
a whole is typically considered as a single entity. The unit’s



overall HP represents the combined health of all the individ-
ual characters within it, and when the unit’s HP reaches zero,
the entire unit is destroyed, regardless of how many individ-
ual characters were still alive. Similarly, healing the unit
may bring back individual characters that had disappeared.

The Life of the Player vs. the Life of What They
Control

Finally, it should be noted that the life of the player and the
life of what they control are not the same in some games. In
real-time strategy (RTS) games, for example, the player is
not eliminated until all their units or buildings are destroyed.
This means that even if the player loses all of their units, they
can still continue to play and try to rebuild their army. Mul-
tiple lives are another representation of this concept, and in
fact the earliest one, allowing the player to try again even
though their character has died, up to a limit. In multiplayer
games, a player may continually re-spawn until some condi-
tion is met, such as a timer to end the match.

Life as Represented by ALife Automata

In this section, we consider the concept of being alive
in ALife side with weight to cellualr automata and self-
organization and discuss potential use of NCA for realiza-
tion and expansion of mechanic and visual represetaiton of
video game characters’ well-being, ability and existence.

From The Game of Life to NCA

Ever since the invention of cellular automata (CA) by Stanis-
law Ulam and John von Neumann and development of Game
of Life (GoL) by John Conway (Wolfram, 2002), CA has at-
tracted researchers and programmers’ interests. From the
perspective of games, GoL is considered a zero-player game
(Bjork and Juul, 2012), which is a small but enduring genre
of games that challenge traditional conventions and mechan-
ics. This gaming heritage perhaps makes NCAs a good can-
didate for future innovations.

NCAs are a type of cellular automata capable of learn-
ing their update rules via artificial neural networks. Among
NCAs, the Growing Neural Cellular Automata (GNCA),
first introduced by Mordvintsev et al. (2020), are notable
in their ability to grow from a seed cell to certain patterns
and “re-grow” destroyed portions of themselves after disrup-
tion. This behavior shows potential as a gameplay mechanic
and representation of the maintenance of life. Rather than
representing an enemy’s well-being through numerical pa-
rameters like hit points or signifying a transition from fully
capable to dead through injury, phase shifts or a death ani-
mation, NCAs potentially realize a more mechanistic and vi-
sual representation of characters’ well-being, capability and
existence by their self-organization.

Self-organization has been a widely discussed topic in
AlLife as a potential mechanism of life, and it is one of main
questions that NCA studies consider. Self-organization can

develop and maintain the patterns, forms and functions of
systems that would be destroyed without it. The mechan-
ics of life in the game characters described above are obvi-
ously not result of self-organization, and characters are alive
because their parameters are over a deactivation threshold
which is unrelated to mechanics of their forms and func-
tions. In reality, creatures are ’supposed” to have no such
built-in parameters and they are alive and functioning be-
cause they can maintain their system as a whole including
interrelated physical, cognitive and behavioral properties.
Thus, building a creature without explicit ~alive/dead” pa-
rameters brings something closer to the reality of being alive
to games.

However, reality is not optimal to video games in many
cases, which are liminal and only approximate the real
world. For instance, if player characters were as fragile
as real humans, variation of gameplay experience would be
very limited. Thus, simply introducing self-organization or
certain mechanics about living-as-system to video games is
not suitable in itself for consideration in game design.

Here, the strength of NCA is its “trainability” which
makes the NCA easier to design. In other words, game de-
signers can train an NCA creature to be intentionally weak
or robust against certain interventions to its system or struc-
ture. For instance, NCA creatures which are well trained at
body but not at head can easily be beheaded. Also, it might
be possible to strongly train the dermal cells (edges or sur-
faces) of a creature such that injuries on the hard shell skin
let attackers to access to not well-trained, thus weak, part of
the body. Furthermore, the phenomena of overgrowth ob-
served on NCA can cause emergent phase shifts of the crea-
ture due to damage. Such NCAs’ potential capability to be
designed is considerable for game design.

Note that even though NCA creatures are not alive or dead
by explicit parameters, currently developed NCAs still have
parameters on cells such as their growth speed and size.
These parameters can also affect the robustness of creatures
by increasing their heal speed. However, these parameters
are part of creature mechanics as system unlike universal
health point, and these parameters can be replaced by self-
organization as well in future.

Scalability and Stability Limits

While NCAs have shown promising results in generating vi-
sually appealing and coherent patterns, they does have cer-
tain spatial scalability limitations, given their dependence on
the input image size. The behavior and output of NCA mod-
els are typically constrained by the size of the input image
they are trained on. This means that if a model is trained
on a specific image size, such as a 40x40 pixel image of a
lizard emoji, it may have difficulty generating larger images
or textures beyond that size.

This limitation is baked into early example of NCA mod-
els which designed to work within the dimensions of their



input image. Therefore, when attempting to generate larger
images, a model would require modifications to its architec-
ture or training process to handle the increased complexity
and transformation of spatial dimensions. This is challeng-
ing, as increasing the image size exponentially expands state
space that the model needs to learn and operate within. Less
important to proofs of concept but still notable for practical
applications: it would likely be more computationally ex-
pensive.

Furthermore, it is well understood and was demonstrated
early on that certain amounts or forms of damage or dele-
tion to an NCA structure can cause it to fail - to no longer
be able to reconstruct itself. The resulting behavior ranges
from developing a stable but unrecognizable form to a con-
tinually growing mass of pixels, or even a split into multiple
instances of the same image. Such behavior possibly af-
fected by things such as the shape and complexity (simplic-
ity) of the image represented by the NCA. However, there
has been no analytically well-established knowledge about
stability of GNCAs.

To overcome these limitations, researchers may pursue
various approaches. One such approach is to develop hi-
erarchical or multi-scale NCA models that can capture pat-
terns and structures at different levels of detail, allowing for
the generation of larger images by combining the outputs of
multiple scales. Careful selection of the shapes of NCAs
used and the ways in which they may be damaged can also
mitigate regeneration errors, though this is not a wholly sat-
isfying solution.

Another, more technical solution would be use of anti-
alias techniques on pixels. Instead of increasing image sizes,
smoothing pixels can improve quality of rendered graphics.
In addition, mapping textures on cells and using cells as po-
sition and state specifier can increase/decrease training im-
age complexity. Also, use of GNCA as growing and regen-
erating state map may have potential for game development
rather than just a solution to issues described above.

Movement Limits

NCAs (and cellular automata more generally) are limited in
their ability to move about their environment, somewhat lim-
iting their utility as agents in a video game setting. NCAs or
CAs in general are enclosed in cellular units, and “move-
ment” is realized by spatial flow like shift of cell states,
like gliders and moving lizards, or deformation of units, like
voxel robots (Roper et al., 2014). The former is more ana-
logus to movement by growth, such as is observed in plants
(Britannica, 2023), but on a more rapid and less resource-
constrained timeline. The latter is close approach to muscu-
lar manipulation of skeletal tissues. Most video games focus
on the mechanism of movement through bones which them-
selves are not deformed.

This provides a practical challenge for introducing new
movement patterns and paradigms as they go against estab-

lished industrial norms and tooling to facilitate bone-based
movement. Designing the motion of a character with defor-
mation of units - such as one might observe in a voxel robot
- (Horibe et al., 2021) requires significant consideration and
development effort. Still, application of deforming muscle-
like voxel robots with regenerating NCAs has big potential
to game character implementation, even though we have to
accomplish higher computational load of voxel characters in
contrast to polygons. At the time of writing, NCAs cannot
easily represent mobile agents, which limits their utility.

& unity : A
: python

json file

damage input:

cell colour output tensor:

jsort file

Figure 3: A schematic diagram of the implemented game
system using Python and Unity. With regards to the Python
code, we used a GNCA model with 16 channels per cell
trained on PyTorch and converted to ONNX. The Python
program receives an input of an array of binary cell state
(0 =dead, 1 = alive) on the game engine and applies it to
the cell 16-channel states. The GNCA model infers the cells
and outputs updated cell states. On the game engine (Unity)
side, the engine reads the RGBa channels of the updated cell
state and depicts alive cells as cubes with a color specified
by the input. The cell cubes are broken on collision with
bullets shot from a player-controlled space fighter.

Figure 4: The most common example of an NCA, the lizard
emoji, imported into a space-invaders style game imple-
mented with Python and Unity. The player attacks and de-
stroys the lizard, but the physical state of lizard begins to
recover.



Implementing Neural Cellular Automata
In-Engine

Introducing NCA to game engines requires running neural
network models alongside game engine functions. Use of
Open Neural Network Exchange (ONNX) is the most acces-
sible option to use neural network models on game engines
at present. Both of major game engines Unity and Unreal
Engine (experimentally) support ONNX format. ONNX is
also supported on Web systems like Node.js and it is pos-
sible to include it in game engines designed for Web usage
like Babylon.js.

Here, as a preliminary implementation of GNCA to video
games, we used Python for running neural network models
and Unity for running the game (see 3). Although there are
performance, ease of implementation with this structure was
prioritized so that communication between ALife, in which
Python is main tool, and game developer community can
be enhanced. Figure 4 is a screenshot of the implemented
game. This implemantation is publicly available, you can
try it (see Appendix).

The implemented game here is inspired by the classic
Space Invaders from 1978. In the original game, space fight-
ers shoot aliens. We replaced aliens with a GNCA lizard
and player is aimed to defeat the lizard by eliminating all its
cells.

Limitations

During gameplay, players experience the regeneration of the
NCA lizard not only toward the original lizard shape but also
sometimes toward deformed shapes. There is also an intrin-
sic weak point in the NCA model used. If the center of the
body is continuously disrupted, the body tends to deform
and loses its lizard shape. Although the shape of the lizard is
not critical issue for player in this particular game per se, the
size can become a problem. For example, if the lizard body
overgrows to cover the entire game field the player will have
no way to avoid lethal contact to the creature. These can
be considered shortcomings, but could, as discussed above,
also be deliberatly incorporated into gameplay design.

Game difficulty is mostly controlled by the NCA gener-
ation speed and how well-trained (stable) the model is. If
the creature regenerates too fast, the player has lower odds
of eliminating all cells because they come back right after
elimination. How well-trained the NCAs’ models is is criti-
cal to properly regenerate the shape. A poorly trained model
results in a lizard that is unstable and can disappear even
without any attacks from player or overgrow without any in-
tervention. Parameter tuning is of course necessary.

As mentioned above, the movement of the NCA creature
needs further development and tuning. NCA in our game is
also immobile. In the original Space Invaders, aliens moves
horizontally back and forth or in an interesting pattern and it
made the game experience richer. Currently possible options
are letting the cell grid as a whole move which would make

the game more like the original or attaching bones for move-
ment to the cell grid to move it around as modern games do.

Discussion

A logical next step for this work would be to add regen-
erative NCA features to player characters, enabling differ-
ent gameplay patterns and decisions based on regeneration
speed, damage location, the resources needed to “regener-
ate”, etc. Coupled with other mechanics (damage types, the
risk of damage being too significant to regrow a certain limb
properly, etc.), this could diversify potential gameplay loops

It should also be possible to couple NCAs with the ex-
isting game industry paradigm of mobile characters. NCAs
can be used as skins (meshes) of “normal” 3D characters
and shading targets. An NCA can be used as a repre-
sentation of the state map of each polygonal mesh, like
shape of marks on the character’s surface, visible or invis-
ible (perhaps demonstrating that the character still not in-
jured/destroyed) and toughness of the polygonal body of
characters.

Applying insights from ALife research, including NCA,
we can in principle create a game that never ends. Typically,
characters in traditional games correspond one-to-one with
input and output, behaving deterministically in response to
player actions. However, by using ALife-like autonomous
agents, we can achieve more diverse and nondeterministic
behaviors. For example, in competitive online games, even
if the game system is consistent, the agents present in the
game are operated by humans and behave autonomously,
keeping us from getting bored.

Furthermore, in games where the termination condition is
not binary, like our shooting game using NCA, it is diffi-
cult to create a unique winning strategy. The lizards of the
NCA have weaknesses, but in some cases attacking them can
result in further proliferation or changes in shape, making
prediction difficult and adding a different type of dynamism
than the semi-randomness of game genres like rogue-likes.
Thus, through the autonomy and robustness of life that the
field of artificial life has continued to research, we can cre-
ate endless games that don’t bore players and do not have a
unique winning strategy.

NCAs have potential not only for representations of one
character, but perhaps also many. NCAs could represent a
large swarm of semi-independent enemies. Whether this
were an action game, a zombie game, or some other type
with many enemies, a swarm that can regenerate at a certain
pace would make for an interesting challenge or interaction.
Indeed, destructible environments could also benefit from
such behavior: the walls of a an “organic” building, for ex-
ample. Opportunities abound.

Acknowledgements

This work was partially supported by JSPS KAKENHI;
Grant Number 21K17822.



Appendix

The source code of the implemented invader game with
NCA is available. Please download and play the game from
the following link: https://github.com/IkegLab/
GNCA_invader/blob/master/README . md

References

Bethesda Softworks: Maryland (2011). The Elder Scrolls V:
Skyrim. PC [Game].

Bethesda Softworks: Maryland (2015). Fallout 4. PC [Game].

Bjork, S. and Juul, J. (2012). Zero-player games or: what we talk
about when we talk about players. In Philosophy of Computer
Games Conference, Madrid. academia.edu.

Blizzard Entertainment: Irvine (2004). World of warcraft. PC
[Game].

Bogost, I. (2007). The rhetoric of video games. In The Ecology
of Games: Connecting Youth, Games, and Learning, pages
117-139. The John D. and Catherine T. MacArthur Founda-
tion Series on Digital Media and Learning.

Britannica, T. E. o. E. (2023). Tropism. In Encyclopedia Britan-
nica.

Capcom: Osaka (2004). Monster Hunter. PS2 [Game].

Electronic Arts: Redwood City (2010). Mass Effect 2. Xbox 360
[Gamel].

Frictional Games: Malmo (2010). Amnesia: The Dark Descent.
PC [Game].

Gygax, G. and Cook, D. (1989). The Dungeon Master Guide, No.
2100, 2nd Edition (Advanced Dungeons and Dragons). TSR,
Inc.

ha Hong, S. (2015). When life mattered: The politics of the real
in video games’ reappropriation of history, myth, and ritual.
Games and Culture, 10(1):35-56.

Horibe, K., Walker, K., and Risi, S. (2021). Regenerating soft
robots through neural cellular automata. In Lecture Notes in
Computer Science, Lecture notes in computer science, pages
36-50. Springer International Publishing, Cham.

Kirkland, E. (2011). Survival horrality: analysis of a videogame
genre. The Irish Journal of Gothic and Horror Studies, 10.

Mojang Studios: Stockholm (2011). Minecraft. PC [Game].

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin,
M. (2020). Growing neural cellular automata. Distill.
https://distill.pub/2020/growing-ca.

Namco Bandai: Tokyo (2011). Dark Souls. PC [Game].
Nintendo: Kyoto (1985). Super Mario Bros. Famicom [Game].

Nintendo: Kyoto (1996). Pocket Monsters Red and Green. Game
Boy [Game].

Red Hook Studios: Vancouver (2016). Darkest Dungeon. PC
[Gamel].

Roper, M., Katsaros, N., and Fernando, C. (2014). Voxel robot:
A pneumatic robot with deformable morphology. In del Po-
bil, A. P., Chinellato, E., Martinez-Martin, E., Hallam, J.,
Cervera, E., and Morales, A., editors, From Animals to An-
imats 13, pages 230-239, Cham. Springer International Pub-
lishing.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An
introduction. MIT press.

THQ: Agoura Hills (2004). Warhammer 40,000: Dawn of War. PC
[Gamel].

Valve Corporation: Bellevue (2009). Left 4 Dead 2. PC [Game].

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.


https://github.com/IkegLab/GNCA_invader/blob/master/README.md
https://github.com/IkegLab/GNCA_invader/blob/master/README.md

	Introduction
	Life as Represented by Game Mechanics
	Hit Points
	Additional Measures of Life
	Status Effects
	Unique Bosses and PCs
	The Effects of Death on the Game World
	"Knocked Down" vs "Dead"
	Multiple Lives
	Agents vs Units
	The Life of the Player vs. the Life of What They Control

	Life as Represented by ALife Automata
	From The Game of Life to NCA
	Scalability and Stability Limits
	Movement Limits

	Implementing Neural Cellular Automata In-Engine
	Limitations

	Discussion
	Acknowledgements
	Appendix

